mTOR complex-2 activates ENaC by phosphorylating SGK1.

نویسندگان

  • Ming Lu
  • Jian Wang
  • Kevin T Jones
  • Harlan E Ives
  • Morris E Feldman
  • Li-jun Yao
  • Kevan M Shokat
  • Kaveh Ashrafi
  • David Pearce
چکیده

The serum- and glucocorticoid-induced kinase 1 (SGK1) plays a central role in hormone regulation of epithelial sodium (Na+) channel (ENaC)-dependent Na+ transport in the distal nephron. Phosphorylation within a carboxy-terminal domain, designated the hydrophobic motif (HM), determines the activity of SGK1, but the identity of the HM kinase is unknown. Here, we show that the highly conserved serine-threonine kinase mammalian target of rapamycin (mTOR) is essential for the phosphorylation of the HM of SGK1 and the activation of ENaC. We observed that mTOR, in conjunction with rictor (mTORC2), phosphorylated SGK1 and stimulated ENaC. In contrast, when mTOR assembled with raptor in the rapamycin-inhibited complex (mTORC1), it did not phosphorylate SGK1 or stimulate ENaC. Inhibition of mTOR blocked both SGK1 phosphorylation and ENaC-mediated Na+ transport, whereas specific inhibition of mTORC1 had no effect. Similarly, small hairpin RNA-mediated knockdown of rictor inhibited SGK1 phosphorylation and Na+ current, whereas knockdown of raptor had no effect. Finally, in co-immunoprecipitation experiments, SGK1 interacted selectively with rictor but not with raptor, suggesting selective recruitment of SGK1 to mTORC2. We conclude that mTOR, specifically mTORC2, is the HM kinase for SGK1 and is required for ENaC-mediated Na+ transport, thereby extending our understanding of the molecular mechanisms underlying Na+ balance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LEFTYA Activates the Epithelial Na+ Channel (ENaC) in Endometrial Cells via Serum and Glucocorticoid Inducible Kinase SGK1.

BACKGROUND Serum & glucocorticoid inducible kinase (SGK1) regulates several ion channels, including amiloride sensitive epithelial Na+ channel (ENaC). SGK1 and ENaC in the luminal endometrium epithelium, are critically involved in embryo implantation, although little is known about their regulation. The present study explored whether SGK1 and ENaC are modulated by LEFTYA, a negative regulat...

متن کامل

The phosphorylation of endogenous Nedd4-2 In Na+—absorbing human airway epithelial cells

Neural precursor cell expressed, developmentally down-regulated protein 4-2 (Nedd4-2) mediates the internalisation / degradation of epithelial Na(+) channel subunits (α-, β- and γ-ENaC). Serum / glucocorticoid inducible kinase 1 (SGK1) and protein kinase A (PKA) both appear to inhibit this process by phosphorylating Nedd4-2-Ser(221), -Ser(327) and -Thr(246). This Nedd4-2 inactivation process is...

متن کامل

A new SGK1 knockout mouse.

THE SERUM AND GLUCOCORTICOIDregulated Kinase (SGK1) is a component of the pathway mediating activation of the epithelial sodium channel, ENaC, in the aldosterone-sensitive distal nephron (ASDN). Aldosterone is released when the body needs more sodium or when blood pressure is low, leading to increased SGK1 transcription and translation (7, 23). SGK1 phosphorylates the E3 ubiquitin ligase Nedd4-...

متن کامل

Glucocorticoids can activate the α-ENaC gene promoter independently of SGK1

The role of SGK1 (serum- and glucocorticoid-induced protein kinase 1) in the glucocorticoid induction of alpha-ENaC (epithelial Na+ channel alpha subunit) gene transcription was explored by monitoring the transcriptional activity of a luciferase-linked, alpha-ENaC reporter gene construct (pGL3-KR1) expressed in H441 airway epithelial cells. Dexamethasone evoked a concentration-dependent (EC50 a...

متن کامل

mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation.

The cell-cycle effects of mTORC1 are not fully understood. We provide evidence that mTOR-raptor phosphorylates SGK1 to modulate p27 function. Cellular mTOR activation, by refeeding of amino acid-deprived cells or by TSC2 shRNA, activated SGK1 and p27 phosphorylation at T157, and both were inhibited by short-term rapamycin treatment and by SGK1 shRNA. mTOR overexpression activated both Akt and S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2010